Application of theoretical knowledge to process control for the development of feeding strategies in fed-batch fermentations

Yaeseong Hong

Institute of Bioprocess and Biosystems Engineering

Framework

- Course: Bioprocess Engineering Advanced Practical Course
- Project implementation in Fed-batch cultivation part
- Consists of colloquium, experimental conduct, written report and final presentation
- 4 groups with each a size of 3-4 students
- Master students of Bioprocess Engineering, and Chemical and Bioprocess Engineering (international) in their final semester

Problem definition

- Strict following of the manual limits the learning experience [3].
- Absence of discussions during the experiment [1].
- Once the reactor is set-up, students are not occupied between the sampling time points.

New didactical concept

Theoretical Knowledge from lectures:

Learned background

Practical application

Sampling

Application Analysis

Calculation

Critical reflection:

New learning experience

- Previously: Process control guideline was given
- New concept: Dynamic feed calculation and application to a running process and reflection of its impact
 - Sampling, analysis, calculation and application accompanied by group discussions
 - Active discussions are stimulated by repeated adjustments [1]
- Presentation of utilized strategy after the experiments

Evaluation (September 2018, N≤11) I was able to extend my This experiment helped me I was able to identify and knowledge regarding understand different aspects utilize key-parameters for fermentation techniques by the feeding strategy from and influential factors for the applying previously cell growth in a fermentation. the theoretical derivation. calculated feeding strategy. Strongly Disagree Agree Strongly Strongly Disagree Agree Strongly In this course, I was able to contribute my ideas and I learned new important suggestions during discussions techniques in this course. and conduction of the experiment.

- The implementation of dynamic feed calculation shows positive acceptance and percipience for the learning experience. Students showed agreement for better understanding of the 'influential factors' and 'key-parameters'.
- Students raised the wish to be able to contribute more own ideas and freedom in the design of the experiment.
- For students who have participated in the pervious practical course, a general repetition of applied techniques limited the outcome.
- There was a general lack of discussion and scientific analysis in the report and presentation, which is crucial for the research-based element of this project.

Project objectives

- Deeper understanding of process control
- Differences between theory and practical application [2]
- Active team assignment: decision making as process engineers [1]
- Reflection of decided process strategy after the analysis

Project implementation

• Research-based element: Active design of dynamic feed for a fed-batch fermentation process

Project procedure

- 1. Theoretical derivation of the feed calculation and required assumptions for application are described in the script.
- 2. After the first fermentation phase (batch fermentation) is initiated, supervisors and students discuss the required calculation for dynamic feed calculation.
- 3. With the initiation of the feeding-phase, data from sampling are to be analyzed and compared with the running process data and calculated estimations.
- 4. If a notable deviation between sampled data and the estimation is found, students adjust the dynamic feeding calculation by modifying the key parameters for the calculation.
- 5. After conducting the practical experiments, the participants present their results and reflect the application.

Side notes

- For the initial run, only the 'exponential feeding' was implemented. This project aims in the future to enable students to choose from a variety of different model-based feeding strategies.
- The previous feeding control guideline was given additionally as a fast analysis method.

Conclusion

- The implementation of dynamic feed calculation improved the research-based learning experience and team-based discussions.
- Variety of different 'feeding' strategies is to be extended. Thus, flexibility and possibilities of own contributions are to be increased.
- To improve the autonomous scientific and research-based aspects, more literature-based analysis and research are to be guided with more detailed instructions and support.

[3]: Lewis, Scott E.; Lewis, Jennifer E. (2005): J. Chem. Educ. 82 (1), p. 135.

[2]: Russell, Cianán B.; Weaver, Gabriela C. (2011): *Chem. Educ. Res. Pract.* 12 (1), pp. 57–67.