Identification of continuum mechanical material parameters of granules by means of particle methods

Project partners:
Deutschen Elektronen-Synchrotron (DESY)

Helmholtz-Zentrum Geesthacht (HZG)

Betriebseinheit Elektronenmikroskopie (BEEM) of TUHH

Project members:
Sonja KrausProf. A. Düster, Prof. M. Dosta, Dr. A. Atrian

Funding party:
Deutsche Forschungsgemeinschaft (DFG)

1.09.2019 – 1.09.2021

Granular materials are suited as filling material to increase the collision safety of ships. For this purpose, the granules are filled into the double hull of ships [1]. The simulation of the collision requires a description of the constitutive behavior of the granules [2], [3]. For this purpose, continuum mechanical material models are used. In this project, the material parameters of the associated constitutive models are to be determined by means of particle methods. To address this question, various experimental and numerical methods are combined:

Experimental determination of particle properties:

  • Young’s Modulus
  • Crushing strength
  • Friction coefficient
  • Restitution coefficient

Continuum mechanical material models:

  • Mohr-Coulomb model
  • Hypoplastic material model

Numerical simulation:

  • The simulation of particle systems with different boundary conditions
  • Identification of the material parameters (including damping) of the continuum models with the help of the DEM simulation
  • FEM simulation of granular materials
  • Experimental validation of the simulation

[1] Schöttelndreyer, M. (2015): Füllstoffe in der Konstruktion: Ein Konzept zur Verstärkung von Schiffsseitenhüllen. Dissertation, Institut für Konstruktion und Festigkeit von Schiffen, Technische Universität Hamburg-Harburg.

[2] Chaudry, M.A., Woitzik C., Düster A. und P. Wriggers (2017):
Experimental and numerical characterization of expanded glass granules. Computational Particle Mechanics, DOI 10.1007/s40571-017-0169-0.

[3] Woitzik C. und Düster A. (2017): Modelling the material parameter distribution of expanded granules. Granular Matter, 19:52, S. 1-12.

[4] Dosta, M. et al. (2016): Numerical and experimental analysis of influence of granule microstructure on its compression breakage. Powder Technology, 299, S. 87-97.